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Recurrent Neural Network

Disadvantages of pooling and CNN
• Pooling only

• Limited representation power

• Insensitive to the input order

• Cannot capture non-linear interactions between input vectors

• CNN
• Cannot capture long-range dependencies between input vectors
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Recurrent Neural Network (RNN)
• A recurrent state-transition process for left-to-right of the 

input sentence

• The state represents the syntactic, semantic and discourse context from 

the beginning until the current input

• Using a standard perceptron layer with non-linear activation to achieve 

the recurrent state-input combination function

Recurrent Neural Network
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Vanilla RNNs

• An input sequence: 𝐗!:# = 𝐱!, 𝐱$, . . . , 𝐱# , n is the length of the sequence

• An initial state: 𝐡% (set to zero or a randomly initialized model parameter)

• How to calculate an output sequence  )𝐡&(𝑡 ∈ [1, . . . , 𝑛] using a vanilla RNN?
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• Given the previous state 𝐡!"# and the current input 𝐱! , 
the current state 𝐡! can be calculated as

𝑓: a non-linear activation function such as 𝑡𝑎𝑛ℎ

𝐖$, 𝐖%,𝐛: model parameters, shared among different time steps

The final vector 𝐡& can be used for representing the input 𝐗#:&. 
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Vanilla RNNs
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• Given the previous state 𝐡!"# and the current input 𝐱! , 
the current state 𝐡! can be calculated as

𝑓: a non-linear activation function such as 𝑡𝑎𝑛ℎ

𝐖$, 𝐖%,𝐛: model parameters, shared among different time steps

The final vector 𝐡& can be used for representing the input 𝐗#:&.

• We learned feed-forward processes. 

• How do we understand a recurrent process?
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Vanilla RNNs
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Layers and time steps 
• A better understanding of RNNs: exchanging time for space.

• Viewed as “unfold”: a standard multi-layer perceptron with lower layers 

towards the left and upper layers towards the right.

• The size of the network dynamically grows with the size of the input sequence. 

• Sharing of model parameters across layers.

Original Unfold

Vanilla RNNs
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Layers and time steps 
• Long-range dependency.

• Only contains the history on the left when encoding each word.

Original Unfold

Vanilla RNNs
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Output layer 
• Use 𝒉# as final 𝒉

• Use pooling of 𝒉!, 𝒉$, … , 𝒉#

Original Unfold

Vanilla RNNs
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Bi-directional RNNs
• Concatenating the historical context using the left-to-right RNN (𝑅𝑁𝑁) 

and model future information using the right-to-left RNN (𝑅𝑁𝑁)
• Parameters of 𝑅𝑁𝑁 and𝑅𝑁𝑁 can be different

An example of Bi-directional RNNs

Vanilla RNNs
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Bi-directional RNNs

Denote a bi-directional RNN by the function )𝐵𝑖𝑅𝑁𝑁(𝐗 :

1 2

1 2

1 1 2 2

( ) [ ; ; ; ]

( ) [ ; ; ; ]

( ) [ ; ; ; ] 

n

n

n n

RNN

RNN
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• ⊕: the vector concatenation operation

• A concatenation of the left-to-right feature vector �⃗�! and the right-to-

left feature vector ←𝐡 ! gives the final representation of the t-th word 

representation

Vanilla RNNs
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Bi-directional RNNs

Output layer

• Use 𝒉&⊕𝒉& as final 𝒉.

• Use pooling of 𝒉#⊕𝒉# , 𝒉(⊕𝒉( …, 𝒉&⊕𝒉&.

Vanilla RNNs
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Training RNNs

• Supposing that 𝒉! is used as final hidden state for RNN.

• Loss pass to 𝒉!
• Need loss for 𝑾" ,𝑾# , 𝒃 and also  𝒙$, 𝒙%, … , 𝒙!
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Training RNNs

Back-propagation through time (BPTT)
• RNNs are trained using unfolded representation with back-

propagation through time (BPTT).

• Assuming that the activation function is

𝑓 = tanh

• The RNNs forward-propagation computing returns as

6𝐡& = tanh(𝐖*𝐡&+! +𝐖,𝐱& + 𝐛
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Back-propagation through time (BPTT)

Given a vector value )*
)𝐡"

passed down from layers above, BTTP returns 
results as follows:
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Training RNNs
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Gradient issues
RNNS can be difficult to train using SGD due to gradient exploding

and gradient vanishing problems.

For -.
-𝐡!"#

with a relatively large number t, we have 
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Gradient issues
• Reasons for Vanishing gradients

• Due to &1 − ℎ!"#$%& ∈ [0,1 , .⊗%'(
# (1 − 𝐡!"#$%& can be extremely small;

• 𝐖) * is not initialized properly with a small value, 𝐖) * #
can be very small

• Reasons for exploding gradients

• 𝐖) * is not initialized properly with a large value, 𝐖) * #
can be very large

Training RNNs
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Tricks for avoiding gradient issues

• Using  truncated BPTT to mitigate the gradient exploding problem

• Using appropriate weight initializations

• Using alternative RNN models such as GRUs and LSTMs

Training RNNs
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Training bi-directional RNNs
Two different aspects from training BiRNNs and vanilla RNNs:

• Both 𝐡! and 𝐡( receive back-propagated gradients

• Each )𝐱+ (𝑖 ∈ [1, … , 𝑛] receives back-propagated gradients from both 𝐡𝒊 and 

𝐡+. These two gradients should be summed as the final gradient.

Training RNNs

An example of Bi-directional RNNs
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Long-Short-Term Memory

Long-short-term memory (LSTM): 
• An RNN variant which allows better SGD training by better control of 

back-propagation gradients over a large number of steps;

• Splitting the hidden state of each recurrent step into a state vector and 

a memory cell vector.

• Using gates for fine-grained control of ''remembered'' and 

''forgotten'' information by each feature
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Given an input 𝐗!:#, the state vector 𝐇!:# and cell vectors (representing 

a recurrent memory in LSTM) 𝐂!:#, with randomly initialized model 

parameters 𝐡𝟎 (initial state) and 𝒄𝟎(cell vectors), 

How to calculate the standard LSTM step 

𝒉&, 𝒄& = LSTM_STEP 𝐱&, 𝒉&+!, 𝒄&+! ?

Long-Short-Term Memory
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𝐖#$ ,𝐖#% , 𝐛# ,𝐖&$ ,𝐖&% , 𝐛& ,𝐖'$ ,𝐖'% , 𝐛',𝐖($ ,𝐖(% and 𝐛( are model parameters;

𝐠!: nonlinear transformation for better representing the input 𝐱!;

𝐢! , 𝐟! , 𝐨!: input gate, forget gate and output gate, respectively;

𝜎 , ⊗ : the sigmoid function and the element-wise multiplication (i.e., Hadamard 

product) operation, respectively.

A standard LSTM recurrent step can be calculated as follows:

Long-Short-Term Memory
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Figure credit: http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

Input Gates

Forget Gates Output Gates

Long term memory
Short term memory

Long-Short-Term Memory
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Gates in LSTM
• LSTM recurrent steps are characterized by the use of gates through 

the Hadamard product operation

• A gate vector takes a real value between 0 and 1

• The element-wise product of a gate vector and a feature vector 

filters each feature with a decay

Long-Short-Term Memory
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Gates in LSTM
• Input gate (𝐢&): controls the reading process of the current input

• Forget gate (𝐟&): keeps the history in memory

• Output gate (𝐨&): decides the mapping from a memory cell to a 

hidden vector

Long-Short-Term Memory
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Bi-directional extension
The bi-directional LSTMs (BiLSTM) can be defined as follows:

1 2
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𝐿𝑆𝑇𝑀: left-to-right LSTMs
𝐿𝑆𝑇𝑀: right-to-left LSTMs

Long-Short-Term Memory
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Gated recurrent units

Gated recurrent Units (GRU)

• Compared to RNNs, LSTMs give better results, but much slower 

due to increased model parameters and computation steps;

• Gated recurrent units (GRU) simplify LSTM by removing the cell 

structure, and using only two gates (a reset gate and a forget gate)

• Better deal with back-propagation gradients with a faster speed
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Gated recurrent units

Given an input sequence: 𝐗#& = 𝐱#, 𝐱(, . . . , 𝐱& , a standard GRU cell 𝐡& =

GRU_STEP(𝐱&, 𝐡&+!) is given by

@𝐫! = 𝜎(𝐖)$𝐡!*+ +𝐖)%𝐱! + 𝐛)

@𝐳! = 𝜎(𝐖,$𝐡!*+ +𝐖,%𝐱! + 𝐛,

@𝐠! = tanh(𝐖$$(𝐫! ⊗𝐡!*+) +𝐖$%𝐱! + 𝐛$

𝐡! = (𝟏. 𝟎 − 𝐳!) ⊗ 𝐡!*+ + 𝐳! ⊗𝐠! ,

𝐖-$ , 𝐖-% , 𝐛- , 𝐖.$ , 𝐖.% , 𝐛. , 𝐖$$ , 𝐖$% and 𝐛$: model parameters
𝐫!: the reset gate
𝐳!: the forget gate
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Stacked LSTMs

• Recurrent neural networks can be stacked to multiple layers to 

improve the representation power

• Each layer in stacked LSTMS feeds its output vectors as input to the 

next layer in the bottom-up direction.

An Example of Stacked BiLSTMs
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𝐡#
%: the output hidden vector of the t-th word at the j-th layer

𝐇%: the output hidden vectors of the whole sequence at the j-th layer

𝐇: the final output vectors

𝐿𝑆𝑇𝑀% and 𝐿𝑆𝑇𝑀% : left-to-right LSTM and the right-to-left LSTM at the j-th layer, respectively

A stacking method can be calculated as follows:

Stacked LSTMs
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Neural Attention

Neural Attention
• An alternative method to pooling operations for aggregating a set of 

vectors

• A weighted sum of vectors in a sequence with regard to certain targets

• Can be used to find a single vector representation of a sentence
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Given a target vector 𝐪(𝐪 ∈ ℝ-) and a list of context vectors 𝐇 = 𝐡(, 𝐡&, ⋯ , 𝐡! (𝐡+ ∈

ℝ-, d is the dimension of 𝐪), the function can be defined as:   

1

1

( , ) ( [1,..., ])
exp( )

exp( )

i i

i
i N

i
i
n

i i
i

s score i n
s

s
a

a

=

=

= Î

=

= ´

å

å

q h

c h

(softmax normalization)

(weighted sum),

𝐜: output of )𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐪, 𝐇 , a weighted sum of the content vectors, which can 

be used as a context-aware feature representation of 𝐪

𝑠#: a relevance score between 𝐪 and 𝐡#
𝛼#: normalised relevance scores based on 𝑠#

]𝛼 = [𝛼+, 𝛼-, ⋯ , 𝛼. : a probability distribution over the content vectors

Neural Attention
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Score function
Dot-product attention
• Defines the score between the target vector 𝐪 and the context vector 𝐡

• No model parameters

• measures the similarity between 𝐪 and 𝐡

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) = 𝐪]𝐡

Neural Attention
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Score function
Scaled dot-product attention

Scales the dot-product attention score by (
-

, where d is the dimension of 𝐪 and 𝐡

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) =
𝐪]𝐡
𝑑

Neural Attention
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Score function
General attention
A parameter matrix 𝐖 (𝐖 ∈ ℝ-!×-") to capture the interaction between each 

element in 𝐪 (𝐪 ∈ ℝ-!) and each element in 𝐡 (𝐡 ∈ ℝ-")

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) = 𝐪]𝐖𝐡

Neural Attention
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Score function
Additive attention
• First performs a linear combination of 𝐪 and 𝐡

• then applies a feedforward neural layer before squeezing the resulting vector 

using a parameter vector 𝐯

𝑠𝑐𝑜𝑟𝑒(𝐪, 𝐡) = 𝐯]tanh(𝐖(𝐪⊕ 𝐡) + 𝐛),

𝐯, 𝐖, 𝐛 are model parameters

⊕ denotes concatenation

Neural Attention
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Score function
• For dot-production attention and scaled dot-production attention, 𝐪 and

𝐡must have the same dimension size;

• For general attention and additive attention, 𝐪 and 𝐡 can have 

different dimension size

Neural Attention
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• Loss over 𝒄 given 

• Calculate loss over 𝒒, 𝒉^ (𝑖 ∈ [1, … , 𝑛])

Back-propagation Rules
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Correlation with gating functions
• Given a set of hidden vectors 𝐇!:# = 𝐡!, 𝐡$, . . . , 𝐡# and a target vector 𝐪, 

a set of gate vectors for aggregating 𝐇!:# can be calculated as

• Offering more fine-grained combination of input vectors, but is also 

computationally more expensive 

1 2

1

( , ,... )

,

q h
i i

i n
n

i i
i

softmax

=

= +

=

= Äå

s W q W h
g s s s

c g h

(element-wise softmax)

𝐖/ and 𝐖$ are model parameters

⊗ denotes element-wise multiplication

Neural Attention
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Query-Key-Value Attention

• Similar to database queries, contexts in neural attention also contain a 

set of key-value pairs;

• Context vectors can be regarded as associated memories in this case

• Given a target query, comparing the query vector with the key vectors 

and return the related value vectors
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(softmax normalization)

(weighted sum),
1

1

( , ) ( [1,..., ])
exp( )

exp( )

i i

i
i N

i
i
n

i i
i

s score i n
s

s
a

a

=

=

= Î

=

=

å

å

q k

c v

• Suppose: the query vector 𝐪, the key vector ]𝐊!:# = [𝐤!; 𝐤$; ⋯ ; 𝐤#
and the value vector ]𝐕!:# = [𝐯!; 𝐯$; ⋯ ; 𝐯#

• For each key vector 𝐤^, the corresponding value vector 𝐯^, the 

query-key-value attention function )𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐪, 𝐊, 𝐕 is

𝐜: output of )𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐪, 𝐇 , a weighted sum of the value vectors with the.  i-th weight 

score being 𝑠+, 𝑠+: attention score between the query vector 𝐪 and the i-th key vector 𝐤+

Query-Key-Value Attention
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Query-key-value attention with a sequence of queries

• Deal with sequence of queries: call call the attention function 

separately for each query, and then concatenate the results

• Given the sequence of queries ]𝐐!:_ = [𝐪!; 𝐪$; ⋯ ; 𝐪_ , key vectors K 

and value vectors V, the attention function )𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐, 𝐊, 𝐕 is

1 1

2 2

1 2

( , , )
( , , )

( , , )
( , , ) [ ; ; ; ],

l l

l

attention
attention

attention
attention

=
=

=

=

c q K V
c q K V

c q K V
Q K V c c c





𝐜^ ∈ ℝ`: the attentive result of the i-th query

Query-Key-Value Attention
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Parallel computations

Using matrix multiplications to enable parallel computations for 

reducing computational expenses

1

( , )
( )

score
softmax

=
=

S Q K
A S

𝐂 = 𝐕𝐀*: final result, which is taken as 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐐, 𝐊, 𝐕) ∈ ℝ/×-. The i-th row represents the 

attentive result vector of 𝐪+
𝐒 ∈ ℝ/×!: a score matrix, 𝑠 +][% (also donated as 𝑠+%) is the relevance score of 𝐪+ and 𝐤%

)𝑠𝑜𝑓𝑡𝑚𝑎𝑥((𝐒 : applying the softmax function to normalize each column in 𝐒

𝐀 ∈ ℝ/×!: attention score matrix 

Query-Key-Value Attention
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Self-Attention-Network

Self-Attention-Network (SAN)
• Self-Attention-Network (SAN) aggregates a set of vectors, which can be 

useful to design an attention network structure

• Given 𝐗#:& = 𝐱#, 𝐱(, . . . , 𝐱&, the output vector 

)

𝐇#:& =

𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐗#:&, 𝐗#:&, 𝐗#:& can be calculated as

𝐡/: an attentive representation of 𝐗#:& by using 𝒙𝒊 as a query

)𝐇!:# = 𝑎𝑡𝑡𝑒𝑛𝑡𝑖𝑜𝑛(𝐗!:#, 𝐗!:#, 𝐗!:#



56

Two advantages for SANs
• Allowing the representation 𝐡^ in each layer to take into 

consideration all 𝐱^s globally

• The time complexity of RNNs is )𝑂(𝑛# , while the time complexity 

of SANs is )𝑂(𝑛

• Transfer (Chapter 16) is a more advanced SAN framework.

Self-Attention-Network
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Representing Trees

Representing Trees

• Trees structures are useful for representing syntax, semantics, etc

• Tree LSTMs
• constructed by extending a sequence LSTM model

• recurrent time steps can be taken in the bottom-up direction and receive 

information from its subnodes recurrently

• top tree node can contain features over the entire tree structure

• multiple predecessors in a tree LSTM model
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Figures of Tree LSTMs

Sequence (a) and tree LSTMs (b and c).

(a) sequence LSTM

(b) Child-sum tree LSTM (c) Binary tree LSTM

Representing Trees
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Child-Sum Tree LSTM

• Representing arbitrary trees through turning multiple child nodes 

into one by summing up their hidden states

• A bottom-up recurrent computation of hidden states, and the input is 

rearranged hierarchically from the root

• The values of hidden nodes are calculated layer by layer

Word order Hierarchy
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Notations
𝑿𝟏:𝒏 = 𝐱!, 𝐱$, . . . , 𝐱#: embedding vectors of an input sentence

)𝐡& (𝑡 ∈ [1, . . . , 𝑛] : hidden state vectors of the input

𝐱&^ : word embedding vector indexed in the bottom-up order, t is the 

layer index from the bottom, and i is the index within the layer

𝐡&^ : hidden state vector indexed in the bottom-up order

Child-Sum Tree LSTM
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Notations
Given an embedding node 𝐱&^ ,
• its predecessor node hidden state can be represented as 

𝐡&+!
)b(&,^,! , 𝐡&+!

)b(&,^,$ , . . . , 𝐡&+!
@b(&,^,c#
$

• its corresponding cell states can be represented as   

𝐜&+!
)b(&,^,! , 𝐜&+!

)b(&,^,$ , . . . , 𝐜&+!
@b(&,^,c#
$

where, 𝑚&
^ : the number of child nodes of 𝐱&^

)𝑐(𝑡, 𝑖, 𝑗 : the index of the 𝑗-th child node of 𝐱&^ among 

nodes on the 𝑡 − 1 -th layer

Child-Sum Tree LSTM

𝐶 2,2,1 = 1
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𝐡&+!^ =]
de!

c#
$

𝐡&+!
)b(&,^,d

Hidden states of all its child nodes

𝐡&+!
)b(&,^,d , 𝑗 ∈ [1, . . . , 𝑚&

^] are summed up into a single hidden 

state 𝐡&+!^ as 

Child-Sum Tree LSTM
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Gates for Child-Sum Tree LSTM

• Given 𝐡&+!^ and 𝐱&^ , the input gate 𝐢&^ and output gate 𝐨&^ are 

calculated as

𝐖^*, 𝐖^,, 𝐛^, 𝐖f*, 𝐖f, and 𝐛f are model parameters

• For a cell state 𝒄&+!
b(&,^,d)(𝑗 ∈ [1, . . . , 𝑚&

^]), the forget gates are calculated 

as

6𝐢&^ = 𝜎(𝐖^*𝐡&+!^ +𝐖^,𝐱&^ + 𝐛^

𝐨&^ = 𝜎(𝐖f*𝐡&+!^ +𝐖f,𝐱&^ + 𝐛f),

𝐟&
^,d = 𝜎(𝐖g*𝐡&+!

)b(&,^,d +𝐖g,𝐱&^ + 𝐛g),

𝐖g*, 𝐖g, and 𝐛g are model parameters

Child-Sum Tree LSTM



Calculating the cell states 𝐜& and the hidden state 𝐡&^

• The cell state 𝐜& is calculated as

𝐖h*, 𝐖h, and 𝐛h : model parameters

𝐠&^ : a new cell state with the input 𝐱&^ being considered

⊗: Hadamard product

• 𝐡&^ can be calculated as
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1

, ( , , )
1

1

tanh( )

,
i
t

i gh i gx i g
t t t

m
i i i j c t i j
t t t t t

j

-

-
=

= + +

= Ä + Äå

g W h W x b

c i g f c

6𝐡&^ = 𝐨&^ ⊗ tanh(𝐜&^

Child-Sum Tree LSTM
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Binary Tree LSTM

• Binary tree: each node has at most two child nodes

• The hidden state of each child node to be considered separately

• More fine-grained in computing gate and cell values

• Goal: calculating a hidden vector 𝐡!/ for each node in a tree LSTM. (𝑡

is the bottom-up layer index and 𝑖 is the in-layer node index)



70

Notations
𝑥!#: word embedding vector indexed in the bottom-up order, 𝑡 is the layer index 

from the bottom, and 𝑖 is the index within the layer

𝐡!# : hidden state vector indexed in the bottom-up order

𝐜!# : cell state vector indexed in the bottom-up order

𝐡#"(
)3(#,+,6 , 𝐡#"(

)3(#,+,7 : hidden state values of left and right child of 𝑥#+

𝐜#"(
)3(#,+,6 , 𝐜#"(

)3(#,+,7 : cell values of left and right child of 𝑥#+

)𝑏(𝑡, 𝑖, 𝐿 , )𝑏(𝑡, 𝑖, 𝑅 : the index of the left and right child of 𝑥#+ among nodes on the 

𝑡 − 1 -th layer

Binary Tree LSTM
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For binary tree LSTM, recurrent LSTM steps follow sequential LSTM cell 

computation, but differentiating the two predecessor states of each node

The input gate 𝐢#+ and two forget gates 𝐟#
+,𝑳 and 𝐟#

+,𝑹 are computed as follows:

( , , ) ( , , ) ( , , ) ( , , )
1 1 1 1

, ( , , ) ( , , ) ( , , ) ( , , )
1 1 1 1

, ( , , ) ( ,
1 1

( )

( )

(

l l l l l

r r

i ih b t i L ih b t i R ic b t i L ic b t i R i
t L t R t L t R t

f h f h f c f c fi L b t i L b t i R b t i L b t i R
t L t R t L t R t

f h f hi R b t i L b t
t L t R t

s

s

s

- - - -

- - - -

- -

= + + + +

= + + + +

= +

i W h W h W c W c b

f W h W h W c W c b

f W h W h , ) ( , , ) ( , , )
1 1 )r r rf c f c fi R b t i L b t i R

L t R t- -+ + +W c W c b

𝐖0
#$ ,𝐖1

#$ ,𝐖0
#2 ,𝐖1

#2 , 𝐛# ,𝐖0
&!$ ,𝐖1

&!$ ,𝐖0
&!2 ,𝐖1

&!2 , 𝐛&! ,𝐖0
&"$ ,𝐖1

&"$ ,𝐖0
&"2 ,𝐖1

&"2 , 𝐛&!

and 𝐛&" are model parameters

Binary Tree LSTM
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( , , ) ( , , )
1 1

, ( , , ) , ( , , )
1 1

( , , ) ( , , )
1 1

tanh( )

( )
tanh( ),

i gh b t i L gh b t i R g
t L t R t
i i i i R b t i R i L b t i L
t t t t t t t
i oh b t i L oh b t i R oc i o
t L t R t t
i i
t t t

s

- -

- -

- -

= + +

= Ä + Ä + Ä

= + + +

= Ä

g W h W h b
c i g f c f c
o W h W h W c b
h o c

𝐖*
1$ ,𝐖2

1$ , 𝐛1,𝐖*
3$ ,𝐖2

3$ ,𝐖34 and 𝐛3 are model parameters

The cell state and hidden state values are computed as follows:

Binary Tree LSTM
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Tree LSTM Features and Sequence 
LSTM Features

• Difference between Tree LSTM and Sequence LSTM

• Sequence LSTM: Integrating local word-level features into hidden 

representations that reflect a sentence-level context

• Tree LSTM: Control the process of information integration, 

whereby syntactically correlated words are integrated before 

unrelated words, stronger in capturing long-range syntactic 

dependencies
• The representation power of tree LSTMs can be further combined with that 

of sequence LSTMs by stacking a tree LSTM on top of a sequence LSTM 
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Tree LSTMs and DAG LSTM

• Directed Acyclic graph (DAG) 

• Extension of tree LSTM into Lattice LSTM,

• More than one predecessors and successors. 
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Examples of general graph structures
• Semantic graph

• Cyclic structure, which causes difficulty in finding a natural order of 

nodes in a graph

• Hard to define recurrent time steps for calculating hidden states

Cyclic graph

Representing Graphs
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To calculate a hidden state for representing a node in a large 

graph-level context:
• graph nodes can be made independent of a node order

• each node can collect information from its neighbors recurrently

Recurrent graph state update

Representing Graphs
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To calculate a hidden state for representing a node in a large graph-level context:

• time steps can be taken in a direction that is orthogonal to the graph edges

• View as a sequence of ''snapshots‘’ of the graph structure

• Each ''snapshot‘’ represents a recurrent time step

• At each time step, the hidden state is updated by collecting information 

from the hidden states of itself and its neighbors in the previous time step.

• Viewed as a message passing time step, where each node collects 

information from its neighbors as a message for updating its own state. 

Representing Graphs
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Notations

𝑉 𝐸 : the graph

c𝑉 = {𝑣!, 𝑣$, . . . 𝑣 j : nodes in the graph

c𝐸 = {𝑒!, 𝑒$, . . . , 𝑒 k : edges in the graph

6𝑒^ = (𝑣^!, 𝑙^, 𝑣^$ : the connection of two nodes 𝑣^! and 𝑣^$ with an 

edge labelled 𝑙^ (𝑖 ∈ 1, . . . , 𝐸 )

For directed graphs, we assume that 𝑒^ points from 𝑣^! to 𝑣^$

Representing Graphs
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Graph neural network (GNN)
• Assigns an initial hidden state vector 𝐡%^ for each 𝑣^ (𝑖 ∈

1, . . . , 𝑉 ), and then recurrently calculates 𝐡!^ , 𝐡$^ , . . . , 𝐡]^ as the 

hidden state for representing 𝑣^
• 𝐡&^ represents the hidden state for node 𝑖 at step 𝑡

• The total number of time steps 𝑇 can be decided empirically 

according to a task that uses the representation

Representing Graphs
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Graph Recurrent Neural network (GRN)

Graph recurrent neural network (GRN)
• Calculating the hidden states 𝐡!^ , 𝐡$^ , . . . , 𝐡]^ for a node 𝑣^ in a 

recurrent process

• Given an aggregated previous state 𝐦&+!
^ and a current input 𝐱^, 

the hidden state 𝐡&^(𝑡 ∈ 1,… , 𝑇 ) is calculated as: 

𝐦&+!
^ : the aggregation vector of previous hidden states of 𝑣^

𝐱^: the aggregation vector of the input representation over the neighbors of 𝑣^

1STM TEPL _S ( , ),i i i
t t-=h m x
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Graph recurrent neural network (GRN)
• The aggregated state 𝐦&

^ : message received by 𝑣^ at time 𝑡

• For undirected graphs, or disregarding edge directions in directed 

graphs, given neighbours of node 𝑣^ as )𝛺(𝑖 , 𝐦&+!
^ can be represented as: 

𝐦&+!
^ = ]

)l∈n(^

𝐡&+!l

Graph Recurrent Neural network (GRN)
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Graph recurrent neural network (GRN)
x^ represents the inherent natures (integrating both node and edge 

information) of the graph node 𝑣^ can be defined as:

𝐱^ = ]
)l∈n(^

(𝐖,(𝑒𝑚𝑏(𝑣^) ⊕ 𝑒𝑚𝑏o(𝑙(𝑖, 𝑘)) ⊕ 𝑒𝑚𝑏(𝑣l)) + 𝐛,),

𝑒𝑚𝑏: the embedding for a node

𝑒𝑚𝑏:: the embedding for an edge

)𝑙(𝑖, 𝑘 : edge label between 𝑣+ and 𝑣;
𝐖< and 𝐛<: model parameters

Graph Recurrent Neural network (GRN)
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Differentiating edge directions
For directed graphs, neighbor nodes can be grouped by the 

edge direction for more fine-grained representation. 

𝐦&+!
^ for 𝑣^ can be calculated as:

1 1
( )

1 1
( )

1 1 1

i k
t t

k i

i k
t t

k i

i i i
t t t



¯


- -

ÎW

¯
- -

ÎW

 ¯
- - -

=

=

= Å

å

å

m h

m h

m m m

)𝛺↑(𝑖 and )𝛺↓(𝑖 : all incoming and outcoming neighbours, respectively
𝐦#"(
+↑ and 𝐦#"(

+↓ : previous states from neighbors with incoming and outgoing edges
𝐦#"(
+ : the concatenation of 𝐦#"(

+↑ and𝐦#"(
+↓

Graph Recurrent Neural network (GRN)
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Differentiating edge directions
𝐱&^ of directed graphs can be defined by combining 

information in both edge directions

( )

( )

( ) ( , ) ( )

( ) ( , ) ( )

,

( ( ( ) ) )

( ( ( ) ) )

i
t k ix x

k i

i
t k ix x

k i

i i i
t t t

emb v emb l i k emb v

emb v emb l i k emb v


¯


 

ÎW

¯
¯ ¯

ÎW

 ¯

= Å Å +

= Å Å +

= Å

å

å

x W b

x W b

x x x

𝐖<↑, 𝐛<↑,𝐖<↓ and 𝐛<↓: model parameters

)𝑙(𝑘, 𝑖 : the label of edge from 𝑣; to 𝑣+

Graph Recurrent Neural network (GRN)
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Graph Convolutional Neural network (GCN)

Graph convolutional neural network (GCN)
• GCN uses a convolution function to calculate 𝐡&^ based on 𝐡&+!^

• Using the same equations with GRN for calculating 𝐦&
^ and 𝐱&^

• For updating node states, GCN uses the convolutional function 

as follows:

𝐡&^ = 𝜎(𝐖c𝐦&+!
^ +𝐖,𝐱&^ + 𝐛),

𝐖c,𝐖, and 𝐛 are model parameters



89

Different edge labels

A variant of GCN collects information separately from different 

neighbors, using different weights for edges with different labels.

Donating edge label between 𝑣^ and 𝑣l as )𝑙(𝑖, 𝑘 and edge 

direction between 𝑣^ and 𝑣l as )𝑑𝑖𝑟(𝑖, 𝑘 , a GCN can be redefined as

( , ), ( , ) 1 ( , ), ( , ) ( , ), ( , )
( )

( ) ( , ) ( ) ,

( ( ))

( ( ) )

i m k x k
t l i k dir i k t l i k dir i k t l i k dir i k

k i

k
t k iemb v emb e i k emb v

s -
ÎW

= + +

= Å Å
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x

𝐖 )/(+,;),-+?(+,;
@ : |𝐿|×2 sets of model parameters to replace a single 𝐖@. Similar extension to 

𝐖< and 𝐛 . 𝐿 : the set of edge labels

Graph Convolutional Neural network (GCN)
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Adding Gates
Another variant of GCN applies gates to control the amount of 

information passed from each 𝐡l(𝑘 ∈ 𝛺 𝑖 ) to 𝐡^

The value of a gate 𝐠&
^,l can be defined as:

𝐖 )/(+,;),-+?(+,;
A and 𝐛 )/(+,;),-+?(+,;

A are |𝐿|×2 sets of model parameters

The gate can be used for updating node states as follows

𝐠&
^,l = 𝜎(𝐡&+!l 𝐖 )_(^,l),`^p(^,l

h + 𝐛 )_(^,l),`^p(^,l
h ),

,
( , ), ( , ) 1 ( , ), ( , ) ( , ), ( , )

( )
( ( ))i i k m k x k

t t l i k dir i k t l i k dir i k t l i k dir i k
k i

s -
ÎW

= Ä + +åh g W h W x b

Graph Convolutional Neural network (GCN)
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Graph Attention Neural network (GAT)

Using attention functions for aggregating information from 

neighbor states at each recurrent step

𝐡&^ for 𝑣& at step 𝑡 is defined as follows:

𝐡&^ = ]
)l∈n(^

𝛼^l 𝐡&+!l

𝛼+;: normalising a set of attention scores, each calculated using the 
previous hidden states 𝐡#"(+ and 𝐡#"(; as follows:

𝐖: a model parameter

1 1
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( )
exp( ) ,
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Graph Attention Neural network (GAT)

• GATs also have variants

• Graph Transformer is built on Transformer.
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Feature Aggregation

• GNNs calculate a hidden state for each node in a graph structure

• Adding one aggregation layer (pooling or attention aggregation) 

on top of the final 𝒉^ (𝑖 ∈ [1, . . . , |𝑉|]) to obtain a single vector 

representation of the whole graph
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Analysing Representation
The neural representation vector h 

Dynamically computed low-dimensional dense

• Pros

• contain automatic combinations of input features

• capturing syntactic and semantic information

• Cons

• not easily interpretable

Two indirect ways to analyse learned representation vectors

• Visualisation

• Probing tasks

• Ablation
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Visualisation
• Projecting hidden representations into a two-dimensional figure to 

better understand their correlations

• Preserving the distance correlation between vectors to gain knowledge 

about the characteristics of the representation vectors

• A useful tool: t-distributed stochastic neighbor embedding ( t-SNE)

Analysing Representation
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t-distributed stochastic neighbor embedding ( t-SNE)
A non-linear dimensionality reduction technique that aims to preserve the 

distance correlation between vectors in the original high-dimensional vector 

space and then projected to two-dimensional space.

An example of t-SNE visualisation of positive and negative documents.

Analysing Representation
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Probing tasks

• Auxiliary tasks that predict the features that we expect a learned 

representation to capture.

• Using a set of additional output layers.

• Procedures

• given a set of documents with gold-standard outputs

• run the representation model and dump the vector representation

• train a very simple classification model, and treat the probed task as 

the output

• the more accurate the trained simple model is, the more confident we 

are that the representation vectors contain relevant information

Analysing Representation
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• Remove a vector from a set of hidden states.

• Check output.

Ablation
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More on Neural Network Training

• Optimisation technique: A key to successful representation 

learning especially for neural network training

• Simple methods such as SGD may not give the best optimisation

towards a training objective because the neural network 

structure becomes increasingly deep and complex

• This section will list more alternatives for optimisation
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AdaGrad
• AdaGrad: an optimisation algorithm that adaptively sets the learning 

rate for each parameter based on the gradient

• Notations
• 𝛩: model parameters

• 𝐠: the corresponding set of gradients

• For each parameter )𝜃/ ∈ 𝛩(𝑖 ∈ [1, … , 𝛩 ] , AdaGrad maintains an 

accumulated squared gradient 𝑠𝑔^ from the start of training to estimate 

the per-parameter learning rate.

• The learning rate 𝜂^ for 𝜃^ is inversely proportional to the root of 𝑠𝑔+
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• The update rules of AdaGrad can be written as:

𝐿: loss

𝜖: a hyper-parameter for numerical stability

𝑡: the time step number in parameter update

𝑠𝑔#,+: the sum of squares of the gradient with respect to 𝜃+

• Common hyper-parameter settings:
• 𝜖 = 1𝑒"B

• 𝜂 = 0.01

More on Neural Network Training
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RMSProp

• Problems for AdaGrad

• the learning rate decreases monotonically and aggressively, which 

can lead to early and suboptimal convergence

• sensitive to initial gradients

• RMSProp solves the problems of AdaGrad by

• using attention to a limited history window instead of all history 

gradients

• the initial gradient does not greatly affect the learning rate of 

future time steps
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RMSProp
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• The update rules of RMSProp can be written as:

𝔼|𝐠(|!: the dynamic average of the squares of the gradients. 𝜌: a hyper-parameter 

controlling the percentage of the previous average and the current gradient

• The remaining updating rules are the same as AdaGrad

• Common hyper-parameter settings:
• 𝜌 = 0.9 𝜂 = 0.001
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AdaDelta

• dealing with the learning rate decay problem of AdaGrad, with an 

exponentially running average of the square of history gradients

• replacing manual selection of the initial learning rate 𝜂 with an 

estimation of 𝛥𝛩 at the t-th timestep

• The key idea is to make the parameter update 𝛥𝛩 proportional to the 

parameter 𝛩 itself
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AdaDelta
• The update rules of AdaDelta can be written as:

𝛥𝛩: the parameter change
|𝔼|𝛥𝛩( : the exponential running averaging of the squares of the parameter change

• 𝑅𝑀𝑆|𝛥𝛩|& remains unkown before calculating 𝛥𝛩

• Therefore, AdaDelta approximate 𝑅𝑀𝑆|𝛥𝛩|# by assuming )𝑅𝑀𝑆(⋅ function is locally 

smooth
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AdaDelta

• The update rules for 𝛥𝛩& can be written as:

𝑅𝑀𝑆|𝛥𝛩|&+!: an acceleration term, summarising the history parameter 

update within a recent window

• Common hyper-parameter settings:
• 𝜌: 0.9
• 𝜖: 1𝑒+q

𝛥𝛩& = −
𝑅𝑀𝑆|𝛥𝛩|&+!
𝑅𝑀𝑆|𝐠|&

𝐠&
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Adam

• integrates the ideas of momentum SGD and RMSProp by maintaining the 

exponentially running averages of both the first order moment and the 

second order moment

• moment: a mathematical tool for quantitative description of the shape of 

the gradient function

• first order moment: records the moving average of history gradients

• second order moment: accumulates the moving average of history 

squared gradients
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Adam
• The two gradient estimations are defined as:

• 𝐯: a first order moment estimation, acting as the momentum

• |𝔼|𝐠$ : a second order moment estimation, representing the running 

expectation of the squares of the gradients as in RMSProp.

• 𝛽! and 𝛽$ : hyper-parameters, which are both recommended to be set to 

close 1.
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Adam
• The initial values of 𝐯 and 𝐠 are both zeroes 

• At time step 𝑡, 𝐯k (a weighted sum of gradients within time step 𝑡) 

is given by
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Adam
• 𝑏k , which is the sum of the weights of the gradients 

𝐠$, 𝐠%, . . . , 𝐠k , is given by
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• 𝑏& is not equal to 1, which indicates that Adam is biased towards 

zero parameter update in the beginning steps
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Adam

�𝐯& =
𝐯&

1 − 𝛽!&

�𝔼|𝐠$|& =
𝔼|𝐠$|&
1 − 𝛽$&

𝛩& = 𝛩&+! −
𝜂

�𝔼|𝐠$|& + 𝜖
�𝐯&

To remedy these biases, Adam uses bias-corrected estimations

The bias-corrected estimations for the second order moment is

The final update rule for Adam applied to 𝜃k is 

Common hyper-parameter settings:

• 𝜖:1𝑒+r

• 𝜂:1𝑒+s
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Choosing a Training Method

• The performance of these adaptive gradient optimisers can vary with 

different datasets and hyper-parameter choices

• The choice of the optimiser itself can be viewed as a hyper-parameter

• Adam

• the most popular choice of the adaptive gradient optimisers

• converges much faster than SGD with momentum

• SGD

• obtain good or even better performances with careful learning 

rate decay compared to Adam
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• Recurrent Neural Network and LSTM

• Attention and Self Attention network

• Tree LSTMs

• Graph Neural Network (GCN, GRN, GAT)

• Explainability of neural representations 

• SGD extensions.


